

 Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FARM’14, September 6, 2014, Gothenburg, Sweden.
Copyright © 2014 ACM 978-1-4503-3039-8/14/09…$15.00.

LiveCodeLab 2.0 and its language LiveCodeLang

Davide Della Casa
davidedc@davidedc.com

Guy John
guy@rumblesan.com

Abstract
We present LiveCodeLab 2.0, a web-based livecoding framework,
and its language LiveCodeLang. We describe its operation, its
connection with other livecoding frameworks, and its aspects
related to functional programming.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features – Control struc-
tures, Frameworks.

General Terms Design, Languages.

Keywords DSL; livecoding; functional programming.

1. LiveCodeLab/LiveCodeLang overview
LiveCodeLab [3] is a web-based livecoding [19, 20] environment
developed under the TOPLAP manifesto [18] for real-time 3d
visuals and sample-based sequencing. LiveCodeLab uses a cus-
tom DSL named LiveCodeLang. Although “LiveCodeLab” is the
name of the entire project (including the site, the API, the name of
the performing duo, the language, the editing environment and the
included examples/tutorials), in the context of this paper we’ll
mean “LiveCodeLab” to be just the livecoding environment, the
language and the API. “LiveCodeLang” indicates the language in
isolation.

2. Influences
LiveCodeLab has been inspired by the TOPLAP manifesto, which
articulates in 12 points a set of directives, statements and prefer-
ences regarding performances involving (but not limited to) live
programming. Technically, LiveCodeLab has been directly influ-
enced by Processing [14], Jsaxus [1], Fluxus [6] and Flaxus [8].
From all these frameworks we’ve taken the immediate mode
rendering style, i.e. scene-graph nodes handles are not explicitly
given to and manipulated by users (although Fluxus for example
can also give users access to primitive data). We’ve been inspired
by Jsaxus’ graphic style and Jsaxus’ demos have made us aware
of the technical feasibility of a livecoding environment imple-
mented in HTML5. We’ve also been highly inspired by the
graphic style of Flaxus, in particular the visual effectiveness of
background filling primitives beyond solid fills.

3. Motive
The motive to develop LiveCodeLab was to bring together all of
the elements we loved about other livecoding environments, and
to ground such environment on a new language that would be
both compact, expressive, and immediately accessible to an audi-
ence with low computer literacy. By developing a custom DSL (as
opposed to directly using an off-the-shelf language) we can make
nimble decisions about how the language should behave and feel
like to both the performers and the audience.

4. Research/implementation approach
Both the LiveCodeLab language and the API could have evolved
in many different ways according to the many combinations of
feature ideas and technical options, but often the implementation
decisions were made according to a key constraint in our research
method: it needed (and to some degree still needs) to be “progres-
sive” in its nature, i.e. partial findings would have to be proto-
typed and made to work in short iteration cycles.

As an example, version zero of LiveCodeLab used JavaScript
as its language - same as per Jsaxus’ solution. The next iterations
used CoffeeScript, which is more syntactically compact. Subse-
quent iterations then added simple rewriting rules to avoid the
unnecessary parentheses to indicate method invocation with no
parameters - as it’s often the case that users draw simple graphic
primitives that way. Next iterations added more syntactic and API
shortcuts by addition (and occasional refactoring) of rewriting
rules.

5. Core values

“It is not necessary for a lay audience to understand the code to
appreciate it, much as it is not necessary to know how to play

guitar in order to appreciate watching a guitar performance.”
Aknowledgment point number 1 - TOPLAP Manifesto

Although the TOPLAP manifesto is neutral in regards to the

necessity “for a lay audience to understand the code to appreciate
it”, LiveCodeLab and LiveCodeLang deliberately choose to do
what’s needed for a lay audience not only to understand but also
to pick up and use the language quickly, all while keeping Live-
CodeLab expressive. This is a similar approach for example to
Thingee and its language ThingeeLanguage by Amy Alexander
[19, 20] and, at least it seems to us, David Griffiths’ Daisy Chain,
Al Jazari and SchemeBricks [7, 11]. The fact that LiveCodeLab is
a zero-installation web-based environment also plays well in this
respect.

This “accessibility” choice to make things easy for new users
is not inherently right or wrong, also “easy” and “hard” are sub-
jective aspects, and one could argue for example that something
apparently basic for the authors, such as the meaning of the infix
operator “=”, does not have a single “natural” “easy” meaning and
in fact does require explanation to a lay audience.

For the scope of this project we just declared this accessibility

choice as a requirement we decided to adhere to, and we maintain
that we derived a self-consistent system that offers good trade-offs
between conciseness, learning curve (both for reading and writ-
ing) and expressivity.

Without anticipating a deeper presentation of the language,

here are some examples of decisions we made consistently with
this choice, many of which are unique in respect to other Livecod-
ing frameworks we are aware of (exceptions noted):
• Graphic state changes commands have meaningful and inter-

esting default behaviour when invoked without arguments (à
la Processing).

• Eliminating parentheses for function-invocation notation à la
Ruby and Scala to make a few examples, CoffeeScript for
many cases, Unix shells, and ThingeeLanguage. Note that,
just like in Ruby, Scala and CoffeeScript, precedence is such
that arguments belong to the closest function to the left i.e.:

a b c,d,e is same as a(b(c,d,e))

If another grouping of arguments is intended, then parentheses
are needed for setting priority (but not to indicate the function
call):

a (b c,d),e is same as a(b(c,d),e)

note again that the parentheses denote priority as in the tradi-
tional “arithmetic precedence” sense, and (a little bit like in
Lisp) are not used to separate the function name from the ar-
guments.

• Making available to users a large set of literals for example all
140 CSS colour literals.

• Making use of indentation as a help to avoid parentheses,
braces and semicolons (à la Python, CoffeeScript). We believe
in indentation as a strong visual cue that most people associate
with “grouping” without need for explanation.

• Making use of indentation to define the scope of graphics state
changes (shorter equivalent to the pushMatrix()/popMatrix()
command combinations in Processing and Jsaxus, and equiva-
lent to the “with-state” construct of Fluxus).

• Anonymous functions are often used transparently without
need of any specific notation (“function” notation, “lambda”
notation, arrow notation).

• Providing several shorthands for commands. As an example
“fill red” can be also be expressed as “red fill” or
simply as “red”.

• Multiple steps can generally be inlined. As an example:
rotate

red

box

can be inlined into “rotate red box” (with some notes about
scoping described later in more detail)

6. LiveCodeLab: quick dive-in examples
The simplest program a user can write in LiveCodeLab is:

box

This will create a cube of unit size in the middle of the screen.
Note how LiveCodeLab follows the Fluxus way of default draw-
ing primitives in the middle of the screen (as opposed to Pro-
cessing, where the world coordinates and camera arrangement
cause the equivalent command to draw a cube at the top-left cor-
ner). A slightly more interesting scene can be created by using
the rotate command.

rotate
box

Here the cube will rotate freely, still centred on screen. At this
point it makes most sense to start looking at most function calls in
LiveCodeLab as impure functions that work through their side
effects. In this case, the rotate function will affect the global ori-
entation of everything following it. Also the box function affects
the global graphical state. In fact, all functions that handle matrix
transformations and shape creation work in this fashion

There are two things to note about these programs. First, both

box and rotate are functions that optionally take parameters, but
the “no parameters” default gives an interesting behaviour al-
ready. In the example above, “rotate” without parameters ani-
mates a continuous rotation (as opposed to rotating the world of a
specific amount when parameters are passed). Secondly, these
programs will run as soon as they are typed in. LiveCodeLab uses
an “aggressive” execution model: whenever there is a change to
the program, the environment will immediately attempt to read
and interpret it. If the program is valid, then LCL will run it until
further edits are made.

LiveCodeLab has borrowed ideas liberally from Processing,

many of the keywords and constructs are immediately recogniza-
ble:

background red
rotate

stroke green

noFill
box

fill white

ball

Just like in Processing, the colour and matrix commands immedi-
ately affect the graphic state, so the above program will result in a
white ball with green strokes, positioned in the centre of the green
vertices of a cube, all rotating in front of a red background.

It is also possible to use all matrix and colour commands with

block scoping (note how indentation is significant). Similarly to
the rotate and box functions above, the default usage of the
stroke and fill functions will work through their side effects to
affect all shapes following them.

fill green
rotate // only affects indented parts

 box

 fill red // only affects ball
 ball

box // unaffected by “rotate” and red fill

This program will display a green rotating box, a red rotating
sphere and a fixed green box. In this case the side effects of the
rotate and fill functions are contained to only the indented
blocks. This is achieved by pushing matrix and colour states onto
a stack, performing the code in the block and then popping the
new states back off. The ball command will be performed using
this enclosing state, but commands outside of the block will not.
In essence these blocks are actually just closures that are passed as
arguments to the rotate or fill functions. The user is also free to
inline graphic state commands and primitives, and in-lining im-
plies “nested scoping down the line”, so the above snippet is
exactly the same as:

fill green

rotate box fill red ball
box // unaffected by “rotate” and red fill

Finally, LiveCodeLab allows the use of loops to iterate over a
block of commands:

5 times
 rotate

 box

or the similar version that supports binding of a variable:

5 times with i
 rotate

 box i // nested boxes, i is the scale

This will create five cubes, all rotating at different speeds (the
rotation is compounded at each loop iteration, just like it would in
Processing). Note that in this latter case only the biggest “encas-
ing” box is visible (they are opaque by default), and one of the
inner boxes isn’t even drawn since its scale is zero (“times”
index starts at zero). In both of these programs, the rotation trans-
formations are building on the previous matrix state which results
from their side effects. If the box command were indented so that
the push/pop functionality of rotate were used, then there would
still be five cubes, but their rotation transformations would all be
the same amount, so it would appear to the user as being just a
single cube.

7. LiveCodeLab internals: the four main states
As in all livecoding environments, there is a lot going on in Live-
CodeLab (editing, graphics, sounds, housekeeping), apparently all
at the same time. And yet LiveCodeLab is a single-threaded envi-
ronment with four main states, where four groups of activities are
independently performed at different intervals.

Code editor update and translation/parsing. LiveCodeLab is in
this state every time (or soon afterwards) the program is edited, on
keyboard/mouse events. Note that, although LiveCodeLab doesn’t
pursue this solution at the moment, in theory code editor updates

could trigger a separate Web Worker thread to do the transla-
tion/parsing rather than doing that immediately in the main thread.
The details of the translation/parsing step are discussed in the next
chapters.

User-program running and graphics rendering. This is done up
to 60 times per second. Among other things, the user program
builds the 3d scene and updates the data structures needed to
playback the audio samples (more on this below). The running of
the user program could, hypothetically speaking, be done at a
different interval in a dedicated state separately from the actual 3d
rendering. In practice though, it would be of little use to run the
user program (which sets up the 3d scene) and then not rendering
the scene right away.

Audio samples playback. Audio samples are snippets of pre-
recorded (or pre-synthesised) sound. All samples’ playbacks are
triggered from a dedicated handler running at the interval speci-
fied by a “beats per minute” value - the user can change this value
via a “bpm” command. Starting the playback is a “fire and forget”
asynchronous operation: once the playback is triggered the thread
is free to move on and there is no follow-up.

Autocoder. Toggled by the user, it randomly changes the user
code (live, in the editor) every second (see next section).

Figure 1. LiveCodeLab main states and trigger events

8. The Autocoder
The Autocoder feature allows LiveCodeLab to programmatically
rewrite/modify user programs while they are running, making live
changes within the editor. The Autocoder is meant to be a tool to
aid in exploration of the code, providing some degree of random-
ness, which may give rise to surprising results.

Currently the autocoding capability is fairly simple, confined

largely to changing number values (separate changes for integers
and floating point), colour names, primitive commands and matrix
commands. Sample names and sample patterns in “play” com-
mands are currently left unchanged. The changes are random -
they are not driven by any type of analysis of the program or its
behaviour.

We are considering AST-based code analysis and edits that

would allow for more interesting program changes, including
perhaps code editing assistance and automatic composition.

User
code

updated

keyboard
events

Autocoder
changes

1 second
loop

User code
translation
/ parsing

User
code
run

30 ms.
loop

Graphics
rendering

and
sequencer

data
structure
updates

Audio
samples
playback

loop duration
based on “beats

per minute”
value

Runnable
user code

Sequencer
data

structure

9. Hot-swapping
In LiveCodeLab the user program is updated while typed, there is
no explicit “register” or “update” mode, no special trigger such as
CTRL-enter or shift-enter, no "play button". This behaviour plac-
es LiveCodeLab at “level-4 liveness” in the Tanimoto liveness
hierarchy [17].

At any moment, while being typed, the user program can either

be statically correct or incorrect. In JavaScript and CoffeeScript
static correctness roughly equals to correct syntax, as no type
system checks are done for example. In some cases the program is
statically correct but might perform “differently than expected”
because of its transient state while being typed: we practically
ignore this case as we consider such transient states as part of the
“constructive” nature of the performance, and in our experience
they don’t detract from its quality.

If the program is statically correct, it becomes a candidate for

being run at animation speed (up to 60 times per second according
to graphics/sound load and host system performance). If the pro-
gram is not statically correct then it’s ignored and it’s not a candi-
date for running.

The second check is for runtime errors, for example an array

boundary is exceeded or a non-existent function is called at some
point - the sort of errors that in general can only be detected at
runtime (note again that many checks that are normally performed
at compile time in other languages can’t be done at compile time
in JS/CoffeScript due to their dynamic nature).

Programs that fail at runtime need to be swapped-out with

hopefully “sane” programs to keep the animation from stopping.
To create this “safety net” against misbehaving user programs,
these are kept in a "quarantine" state for the first few seconds of
their runs. If the program runs without run-time errors during this
quarantine period, then LiveCodeLab is going to judge it as stable
and marks it as the “last stable program”. Whenever the subse-
quent program(s) fail (either at compile time or runtime), then this
“last stable program” is brought up and run again, with the hope
(but not the guarantee) that its good run-time behaviour in the past
vouches for it to be a good stand-in.

Note that there is no guarantee that this fallback safety mecha-

nism is going to work in general: scenarios can be easily con-
structed of user programs behaving well for the quarantine period
and then failing afterwards. In practice though the hot-swapping
mechanism adequately covers practically occurring cases. The
most common case is when the user program invokes a function
which name would be valid if it was typed-in in its entirety, but
it’s actually invalid while being partially typed-in, as the prefix
doesn’t match the name of any available function.

10. State(lessness) across frames and program
edits
The only parameters affecting the drawing and sound-playing in
LiveCodeLab are a) the time in milliseconds since start of perfor-
mance and b) the frame count. Note that the sources of random-
ness available to the user, i.e. the “random” and “noise” (Perlin
noise) functions, can optionally be seeded based on a) and/or b)
above.

The implication is that the previously described hot-swapping

of programs can be done without worrying that there might be
data structures to maintain or adapt when the user program chang-
es. The user can obviously code her custom data-structures she
might need, but all user-defined data structures are built afresh in
each frame, which usually, for small/medium sized data struc-
tures, is not a problem. Alternatively the user can calculate only
needed parts of data on-demand rather than larger sets of unneed-
ed data.

An example of an inexpensive data structure that is built anew

each frame is a dictionary holding all the “audio samples” pat-
terns. When the user wants a particular rhythm to be played, she
types for example:

play 'tranceKick', 'zxz'
play 'tranceKick2', 'zzzx'

These patterns (‘zxz’ and ‘zzzx’ in the example above) indicate
when the sample is meant to be played: “z” stands for no-
playback and “x” stands for playback, so in the example above,
the first trance kick sound will play on beats 2,5,8, 11... while the
second trance kick sound will play every 4 beats (4,8,12...). The
“play” command above just adds the sample name and the pat-
tern to a dictionary, this dictionary is then referenced by the
“sample playing” code, running at an independent interval (op-
tionally set by a “bpm” command) to actually start the samples
playback at the right time according to the specified pattern. Alt-
hough this storing of (often the same) patterns every frame is
redundant, it constitutes no problem since the cost is negligible
both in terms of time and memory.

This “from scratch” approach also applies to the scene graph:

each frame discards the previous scene graph and creates a new
one from zero. Although this could seem wasteful for no apparent
good reason, this is just the result of LiveCodeLab sparing the
user from having to build scenes as a hierarchy of nodes. This is
intentional and, just like in Processing, it is in the interest of rapid
prototyping. On the flip side, since node-less scene descriptions
don’t carry meaningful information on structures/hierarchy of the
scenes, LiveCodeLab is not able to smartly update drawings
across frames (for example where changing the transformation
matrix of a single node would be sufficient); this is just like in
Processing or any immediate-rendering 2D graphics framework
such as the HTML5 Canvas 2D Context. Compare this to tree-
based scene models, for example the DOM [4], where the user
classifies and identifies divs and declares the relative positioning
and nesting of such structures. Perhaps unsurprisingly, the more
semantically rich the description provided by the user (e.g. group-
ing, tagging, classification, hierarchies, data dependencies graphs,
relative positioning, nesting), the more optimisations and af-
fordance can be provided by the underlying framework: it’s com-
mon for example for UI/game frameworks to handle reflowing,
visibility tests, tweened animation, events management, physics,
and some web frameworks for example transparently manage
view updates based on underlying data changes [13].

To mitigate some cases where “from scratch” is too expensive

of an approach, sometimes “backing” (behind-the-scenes) data
structures are transparently handled so that costly operations are
cached and only performed when needed. As an example, back-
ground painting is potentially an expensive operation (rendering
of multiple semi-transparent gradients in a 2d Canvas context or

via CSS is surprisingly expensive) and hence the background is
repainted in its own separate layer only if its appearance actually
needs updating rather than blindly being repainted with the same
combination of colours over and over again in each frame. Re-
dundant repainting is avoided by comparing new paint directives
with the ones issued in the previous frame, stored in a dedicated
data structure behind the scenes.

In summary: all graphics and sounds produced in/during each

frame are a pure function of time and frame number, so much that
LiveCodeLab could in principle expose a control to display the
animation back in time, or backwards, or both.

11. LiveCodeLang: spec-sheet
As mentioned, one of the main aims in the design of Live-
CodeLang was to keep a good balance between a language that
would be powerful and expressive, whilst still being easy to learn
for those unfamiliar with programming.

Ideally the code would read similar to natural language, and

interactions would be clear to users. An even more important
aspect is keeping language features to a minimum and having as
little syntax as possible. In particular, we prefer compactness to
“natural language looks”, as opposed to, say, Lingo, the scripting
language of Macromedia Director [12], where several “no-
operation” keywords (such as “the”, “to”, “frame”, “marker”)
could be optionally interspersed in programs to achieve prose-like
fluency. We’d rather achieve prose-like fluency by careful option-
al removal of keywords as in the case of “rotate red box” not
needing the “fill” command before “red”. Shorter keywording
seems to us the way humans prefer to input directions, we certain-
ly feel that way any time we query search engines or map ser-
vices. A great deal of inspiration was taken from CoffeeScript,
Python and Ruby, both in the way they use indentation to define
blocks, and also they aim to have a very orthogonal set of fea-
tures.

Here we summarise more systematically the key principles be-

hind LiveCodeLang, with short examples. For longer / more
articulate examples and step-by-step tutorials please reference the
LiveCodeLab embedded examples and tutorials.

• Eliminating parentheses for function-invocation notation (in

most cases). Example:

 box // draws a box

• Making available to users a large set of literals, for example all
140 CSS colour literals. Example:

fill red

 box

• Making use of indentation as a help to avoid parentheses,

braces and semicolons. Example:

if random > 0.5
 box

 else

 peg

• Making use of indentation as to define the scope of graphics
state changes. Examples:

rotate // only affects the box
 box

 peg

and:

fill red // only affects the box

 box
 peg

• Providing several shorthands for state changes in many cir-
cumstances. Example:

red // instead of fill red

 box

• Multiple instructions can be generally inlined (which limits the
scope). Example:

// rotation and color fill only affect box

rotate red box

// not affected by graphics state changes:
peg

• Iteration without binding a variable:

6 times

 move

box

• Iteration binding a variable:

6 times with i
 move i/10

box

• Higher-order-functions:

either = (a,b) ->

 if random > 0.5 then run a else run b
either <box>, <peg>

Note the “<>” notation for inlined anonymous functions,
“run” is then used to actually evaluate the passed functions.

12. LiveCodeLang implementation
There are two implementations of LiveCodeLang:
• Nanopass source-to-source translation [15] to CoffeScript,

with subsequent translation to JS, and evaluation via “native”
JS runtime.

• Parsing into AST and then sandboxed interpretation.

Nanopass source-to-source translation solution The nanopass
source translation is made for quick prototyping, as it allows
language enhancements via incremental addition of small rewrit-
ing steps following a TDD approach. Surprisingly, the rewriting
steps rarely interfere, so analysis and new enhancements can be
done in isolation from previous steps.
The matching of the rewriting rules is done via regexes. While
regexes are (with a little care) extremely fast matchers, it is well
known that they can’t match balanced parentheses (and by exten-
sion, arithmetic expressions that occur in any program) [16] and
are in general inadequate for non-regular language constructs (e.g.
nested structures) that can normally occur in LiveCodeLang.
Although the source-to-source translator passes a suite of over
270 tests covering common programs (including simple synthetic
cases, all the examples of this paper and other demos/examples),
complex nested programs can reveal these inherent limitations.
Regexes are also in general difficult to read and inspect, so main-
tainability of this solution somewhat suffers.

(As an aside and for comparison, consider that regex-handled

and grammar-less languages/implementations have some wildly
successful representatives, see processing.js for the former [9] and
bash [2] for the latter).

The obtained CoffeeScript source is then passed to the Coffee-

Script compiler for transformation to JS, and then evaluated via
the JS runtime.

The evaluation currently runs unchecked and unguarded,

which means that a) it uses the only thread made available by the
browser to all the JavaScript code within the tab, and b) has the
same access to the browser resources as any other part of Live-
CodeLab itself. Together with the benefits of native runtime
execution and access to the hosting environment itself, there is the
possibility of misuse (mistakenly or intentionally) of browser
resources, especially should we decide to make user code shara-
ble.

Parser/AST/Interpretation solution A dedicated par-
ser/AST/interpreter has also been created. There are many bene-
fits to this solution.

• With a proper grammar defined, it is much easier to continue

extending the language and make some of the more radical
changes we want.

• Having access to a AST made it possible to create a “sandbox-
ing” interpreter, allowing greater control over what code is
run, and which resources can be accessed.

• The interpreter can be ported to other platforms beyond the
browser.

• The AST will also open up the option to emit code, either JS
or other languages.

The Jison parser generator was used to create the necessary LALR
parser from the EBNF grammar. There is still a small amount of
pre-processing that occurs which is primarily due the significance
of indentation when defining blocks. This pre-processing inserts
braces around blocks, making it possible to define a context-free
grammar for the language.

It quickly became clear that to implement some of the lan-
guage features we wanted, a basic type system would be neces-
sary. This was built into the parser, allowing it to recognise be-
tween three classes of functions: primitive commands, matrix
commands and style commands.

In this fashion, the parser is able to break down the program

rotate 3, 4, 4 scale 0.4 fill red box

into the relevant commands and with the relevant scoping.

13. LiveCodeLab / LiveCodeLang and functional
programming
As mentioned, LiveCodeLab’s output is a pure function of time
and frame number, and previous chapters discussed how this
relates to hot-swapping of programs and management of explicit
and behind-the-scenes data structures that need to be maintained
across frames.

Other considerations bring us further into “functional” discussions
territory.

13.1 Functional aspects of JavaScript and the LiveCodeLab
loop (specific to the nanopass translation to CoffeeScript)

JS higher-order function support is key in the CoffeeScript-based
LiveCodeLab loop: each statically correct edit of the user program
is turned into a JavaScript function, and stored waiting to be run at
the next frame interval.

13.2 Functional aspects of JavaScript and LiveCodeLang
implementation

JS higher-order function support is key in the implementation of
LiveCodeLang, as the LiveCodeLang DSL (in both the nanopass
and parser/AST implementations) makes use of the “Nested Clo-
sure” pattern described in [10].

A topical example of the workings of this pattern is the following:

rotate fill red box

which is turned into the CoffeScript (or AST) equivalent behind
the scenes:

rotate (-> fill red, (->box())

(the actual translation to CoffeeScript is the more compact: “ro-
tate -> fill red, box”).

When “rotate” is invoked, it sets the proper matrix transfor-

mation and then evaluates the function passed as its argument (the
“fill” command). Similarly, the “fill” command sets the
color-fill to “red” and evaluates the chained function (the box
command, which draws the box). Upon functions returns (“back
up the chain”), the changes to the graphics state (color and rota-
tion) are “undone”, with the effect of having limited the rotation
and color-fill to the box only.

13.3 Functional aspects of LiveCodeLang itself

LiveCodeLang itself supports higher-order functions. This is by
all means only one aspect of functional programming, yet it is a
key one and in this section we indulge in showing some examples
straight from the familiar functional programming toolbox.

13.3.1 Higher-order-function support

A simple example of higher-order-function support is:

either = (a,b) ->

 if random > 0.5 then run a else run b

either <box>, <peg>

which presents a flickering box/cylinder on screen. Note the
compact “<>” notation for anonymous functions without bindings.

Also note how simply users can invent their own DSLs:

above = <move 0,-0.5,0>

box above ball above peg

and:

flashing = <if random < 0.5 then scale 0>
flashing ball

peg // peg doesn’t flash

13.3.2 More complex examples (specific to the nanopass
translation to CoffeeScript)

The nanopass translation to CoffeeScript is (almost) idempotent,
hence all the resulting CoffeeScript code is itself accepted as valid
code by the environment. In fact the nanopass version of Live-
CodeLang accepts most CoffeeScript programs. Although not a
purely functional language, CoffeeScript exposes the very same
well-known JS functional constructs such as map, filter, reduce,
(all three available in ECMAScript 5.1 standard [5]). So all of the
followings are valid programs.

Using map:

// multiple concentric boxes

noFill

[1..4].map (i) -> box i

Another map example:

// equivalent to “rotate box line peg”

[<box>, <line>, <peg>].map (i) -> rotate i

Example of filter:

// draws random combinations of primitives

primitives = [<box>,<line>,<peg>,<ball>]
selected = primitives.filter (x) ->

 random > 0.5

selected.map (i) -> i()

Example of reduce:

// equivalent to

// “rotate(->scale(->box(->undefined))”

commands = [<box>,<scale>,<rotate>]
drawThis = commands.reduce (acc,x) -> -> x(acc)

drawThis()

Also reduceRight is supported:

// either a ball moving around a box

// or a box moving around a ball

pieces = [<box>, <move>, <ball>]

if random > 0.5

 drawThis = pieces.reduce (acc,x) -> -> x(acc)

else

 drawThis = pieces.reduceRight (acc,x) -> -> x(acc)

drawThis()

Combining filter and reduce:

// draw a cube with a random mix of transformations

transforms = [<rotate>, <scale>, <fill blue>]

randomTran = transforms.filter (x) -> random > 0.5

drawThis = [<box>].concat randomTran

drawThisFunction = drawThis.reduce (acc,x) -> -> x(acc)

drawThisFunction()

14. LiveCodeLab and LiveCodeLang - possible
new directions
There is no formal roadmap for LiveCodeLab, and project partici-
pants are welcome to work on any idea, but here are a number of
possible new directions under discussion:

• Continuous refinement of API and language.
• Static and run-time analysis-led Autocoder.
• Code collaboration.
• Code sharing.
• Interaction with external hw. (beyond currently supported

MIDI interface for setting bpm).
• Automatic camelCase-ing of keywords.
• Symbols swapped-in while editing, e.g. on-the-fly replacement

of ‘->’ and ‘PI’ with è and π.

15. Acknowledgments
The following people also contributed to LiveCodeLab:
• Thomas van den Berg, https://github.com/noio: changes to

event system, support for MIDI bpm input, tying of several
functions to bpm value.

• Darren Mothersele, https://github.com/darrenmothersele:
“shm” and “wave” functions.

• Julien Dorra, https://github.com/juliendorra: French localisa-
tion (currently not in codebase).

• Matthew Lawrence, https://github.com/mattus: alternative
Autocoder implementation (currently not in codebase).

References
[1] Brodsky Jonathan. (Mar 23, 2008). Jsaxus, js opengl livecoding.

Available: https://github.com/jonbro/jsaxus. Last accessed 14th May
2014.

[2] Brown, Amy and Wilson, Greg. (02 June 2011). The Architecture Of
Open Source Applications, Chapter 3.4

[3] Della Casa, Davide and John, Guy. (2014). LiveCodeLab release as
of ACM SIGPLAN 2014 paper submission. Available:
https://github.com/davidedc/livecodelab/releases/tag/ACM-
SIGPLAN-2014-paper. Last accessed 15th May 2014.

[4] "Document Object Model (DOM)." W3C Document Object Model.
N.p., n.d. Web. 23 June 2014.

[5] Ecma-international. (2011). Standard ECMA-262 5.1 Edition. Avail-
able: http://www.ecma-international.org/ecma-262/5.1/. Last ac-
cessed 15th May 2014.

[6] Griffiths, D. (2010). Fluxus. Available:
http://www.pawfal.org/fluxus/. Last accessed 15th May 2014.

[7] Griffiths, D. 2007. “Game Pad Live Coding Performance.” In J.
Birringer, T. Dumke and K. Nicolai, eds. Die Welt als virtuelles En-
vironment. Dresden: TMA Helleraue.

[8] Ivanoff and Jimenez. (2006). Flaxus toplap flash based aplication.
Available: http://www.i2off.org/flaxus/. Last accessed 15th May
2014.

[9] Kamermans, Rathbone, Macrae. (2014). Processing.js, parser source.
Available: https://github.com/processing-js/processing-
js/blob/4e2a5e28daa91128747b910b9c99441be2d315b3/src/Parser/P
arser.js#L270. Last accessed 15th May 2014.

[10] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addi-
son-Wesley Professional. Chapter 38.

[11] McLean, A., Griffiths, D., Collins, N & Wiggins, G. "Visualisation
of Live Code", Proceedings of Electronic Visualisation and the Arts
Conference, London. 2010.

[12] Phillips, Ian. "Online Lingo Resources." LingoOnlineMaster.pdf
(1998): n. pag. Advisory Group on Computer Graphics. Web.

[13] "React | Why React?" React | Why React? N.p., n.d. Web. 23 June
2014.

[14] Reas, C. and Fry, F. 2004. Processing.org: programming for artists
and designers. In ACM SIGGRAPH 2004 Web graphics (SIG-
GRAPH '04)

[15] Sarkar, Dipanwita, Waddell, Oscar, & Dybvig, Kent R. (2005).
EDUCATIONAL PEARL: A Nanopass framework for compiler ed-
ucation. Journal of Functional Programming, 15(5), 653–667.

[16] Schwarz (2012). Regular Expressions and The Limits of Regular
Languages. Available:
http://www.stanford.edu/class/archive/cs/cs103/cs103.1132/lectures/
15/Small15.pdf. Last accessed 15th May 2014.

[17] Tanimoto. A Perspective on the Evolution of Live Programming.
Workshop on Live Programming (LIVE), 2013.

[18] TOPLAP collective. (31 July 2005). TOPLAP Manifesto. Available:
http://toplap.org/wiki/ManifestoDraft. Last accessed 14th May 2014.

[19] Ward, Rohrhuber, Olofsson, et al. (2004). Live Algorithm Program-
ming and a Temporary Organisation for its Promotion

[20] Zmölnig, J., Eckel, G., "Live Coding - An Overview", Proceedings
of the International Computer Music Conference, Copenhagen, DK,
August 2007.

